Plasmalemmal transport of magnesium in excitable cells.
نویسندگان
چکیده
In excitable cells, the concentration of intracellular free Mg2+ ([Mg2+]i) is several hundred times lower than expected if Mg2+ ions were at electrochemical equilibrium. Since Mg2+ is a permeant ion across the plasmalemma, it must be constantly extruded. An ATP-dependent Na/Mg exchanger has been proposed as the sole mechanism responsible for Mg2+ extrusion. However, this hypothesis fails to explain numerous observations including the fact that K+ and Cl- appear to be involved in Mg2+ transport. Until now three main limitations have hampered the studies of plasmalemmal Mg2+ transport: i) 28Mg, the only useful radioactive isotope of Mg2+, has a short half-life and is difficult to obtain; ii) squid giant axons, the ideal preparation to carry out transport studies under "zero-trans" conditions, are only available during the summer months; and iii) the ionic fluxes mediated by the Mg2+ transporter are very small and difficult to measure. The purpose of this manuscript is to review how these limitations have been recently overcame and to propose a novel hypothesis for the plasmalemmal Mg2+ transporter in squid axons and barnacle muscle cells. Overcoming the limitations for studying the plasmalemmal Mg2+ transporter has been possible as a result of the following findings: i) the Mg2+ exchanger can operate in "reverse", thus extracellular Mg2+-dependent ionic fluxes (e.g., Na+ efflux) can be utilized to measure its activity; ii) internally perfused, voltage-clamped barnacle muscle cells which are available all year long can be used in addition to squid axons; and iii) phosphoinositides (e.g., PIP2) produce an 8-fold increase in the ionic fluxes mediated by the Mg2+ exchanger. The hypothesis that we postulate is that, in squid giant axons and barnacle muscle cells, a 2Na+2K+2Cl:1Mg exchanger is responsible for transporting Mg2+ across the plasmalemma and for maintaining [Mg2+]i under steady-state conditions.
منابع مشابه
Molecular evolution of the junctophilin gene family.
Junctophilins (JPHs) are members of a junctional membrane complex protein family important for the physical approximation of plasmalemmal and sarcoplasmic/endoplasmic reticulum membranes. As such, JPHs facilitate signal transduction in excitable cells between plasmalemmal voltage-gated calcium channels and intracellular calcium release channels. To determine the molecular evolution of the JPH g...
متن کاملPlasma membrane Ca2+-ATPase in excitable and nonexcitable cells.
There is a significant number of data confirming that the maintenance of calcium homeostasis in a living cell is a complex, multiregulated process. Calcium efflux from excitable cells (i.e., neurons) occurs through two main systems--an electrochemically driven Na+/Ca2+ exchanger with a low Ca2+ affinity (K0.5 = 10-15 microM), and a plasmalemmal, specific Ca2+-ATPase, with a high Ca2+ affinity (...
متن کاملAsymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels.
The authors have studied the distribution of anionic and cationic sites on both luminal and abluminal endothelial aspects of iridial vessels in Macaca mulatta and Macaca fascicularis. With the animals in general anesthesia, anionic ferritin (AF) and cationic ferritin (CF) were either injected intravenam or perfused at known intraocular pressure (15-20 mmHg) through the anterior chamber. AF intr...
متن کاملTransport of insulin and albumin by the microvascular endothelium of the rete mirabile.
Vascular permeability for albumin and insulin in the continuous capillary network of the rete mirabile of the eel swimbladder was evaluated by ultrastructural immunocytochemistry and countercurrent perfusion experiments. Upon perfusion of the rete capillaries with a buffer solution containing albumin and insulin, these serum proteins were revealed at the electron microscope level, by the Protei...
متن کاملVisualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells.
Caveolae are vesicular invaginations of the plasma membranes that regulate signal transduction and transcytosis, as well as cellular cholesterol homeostasis. Our previous studies indicated that the removal of cholesterol from aortic endothelial cells and smooth muscle cells in the presence of HDL is associated with plasmalemmal invaginations and plasmalemmal vesicles. The goal of the present st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 5 شماره
صفحات -
تاریخ انتشار 2000